The compound you described, **1-[[(1,5-dimethyl-3-pyrazolyl)-oxomethyl]amino]-3-(2-methoxyphenyl)thiourea**, is a **heterocyclic thiourea derivative**. Its importance lies in its potential applications in **various research fields** due to its unique structural features and potential biological activities.
**Here's a breakdown of its significance:**
* **Heterocyclic Structure:** The presence of a pyrazole ring and thiourea moiety makes this compound a heterocyclic derivative. Heterocyclic compounds are known for their diverse biological activities, including antimicrobial, antiviral, and anticancer properties.
* **Thiourea Functionality:** Thioureas are known to exhibit a range of biological activities due to their ability to form hydrogen bonds and interact with enzymes. This makes them potential candidates for developing new drugs.
* **Potential Applications:**
* **Antimicrobial Activity:** Thiourea derivatives often exhibit antimicrobial activity against bacteria and fungi. This compound could be investigated for its potential to combat infectious diseases.
* **Antioxidant Activity:** Thiourea derivatives have been reported to possess antioxidant properties, which can protect cells from damage caused by free radicals. This compound could be studied for its potential in preventing or treating oxidative stress-related diseases.
* **Anti-inflammatory Activity:** Thiourea derivatives are known to exhibit anti-inflammatory effects. This compound could be explored for its potential to treat inflammatory diseases.
* **Other Biological Activities:** Due to its unique structure, the compound could possess other biological activities not yet discovered, requiring further research.
**Research Importance:**
The importance of this specific compound lies in its potential for **drug discovery and development**. Researchers are interested in exploring its various biological activities and potentially utilizing it as a lead compound for developing new therapeutic agents.
**Further Research:**
To fully understand the importance of this compound, further research is needed. This would involve:
* **Synthesis and Characterization:** Synthesizing the compound and characterizing its structure and physicochemical properties.
* **Biological Activity Testing:** Investigating its antimicrobial, antioxidant, anti-inflammatory, and other potential biological activities.
* **Mechanism of Action Studies:** Elucidating the mechanisms by which this compound exerts its biological effects.
* **Preclinical Studies:** Conducting preclinical studies to assess its safety and efficacy in animal models.
By carrying out these research steps, researchers can gain a comprehensive understanding of the potential of this compound and its application in different fields, including medicine and pharmaceuticals.
ID Source | ID |
---|---|
PubMed CID | 842644 |
CHEMBL ID | 1328436 |
CHEBI ID | 107071 |
Synonym |
---|
AK-968/41169599 |
2-[(1,5-dimethyl-1h-pyrazol-3-yl)carbonyl]-n-(2-methoxyphenyl)hydrazinecarbothioamide |
smr000159951 |
MLS000544429 , |
STK301493 |
CHEBI:107071 |
AKOS003752546 |
1-[(1,5-dimethylpyrazole-3-carbonyl)amino]-3-(2-methoxyphenyl)thiourea |
HMS2326F09 |
CHEMBL1328436 |
1-[[(1,5-dimethyl-3-pyrazolyl)-oxomethyl]amino]-3-(2-methoxyphenyl)thiourea |
bdbm52342 |
1-[(1,5-dimethylpyrazol-3-yl)carbonylamino]-3-(2-methoxyphenyl)thiourea |
cid_842644 |
Q27184993 |
Class | Description |
---|---|
substituted aniline | |
methoxybenzenes | Any aromatic ether that consists of a benzene skeleton substituted with one or more methoxy groups. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 35.4813 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 17.7828 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
GLS protein | Homo sapiens (human) | Potency | 10.0000 | 0.3548 | 7.9355 | 39.8107 | AID624170 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 31.6228 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 25.1189 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 10.0000 | 0.0366 | 19.6376 | 50.1187 | AID2100 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 31.6228 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 35.4813 | 0.0079 | 8.2332 | 1,122.0200 | AID2546 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 11.2202 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
POsterior Segregation | Caenorhabditis elegans | EC50 (µMol) | 50.2540 | 2.2010 | 47.1808 | 186.6810 | AID1964 |
Sodium-dependent noradrenaline transporter | Homo sapiens (human) | EC50 (µMol) | 58.4420 | 0.0820 | 31.0243 | 168.9080 | AID1960 |
Zinc finger protein mex-5 | Caenorhabditis elegans | EC50 (µMol) | 58.4420 | 0.0820 | 33.5679 | 168.9080 | AID1960 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
cell surface | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
neuronal cell body membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
presynaptic membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
plasma membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
axon | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |